THE TECH DEBT CHECKLIST

If you notice any of the following issues
within your development process, it's likely
that you are dealing with tech debt.

FREQUENT BUG FIXES AND PATCHES

‘ Are you spending more time fixing bugs than developing new features?

‘ Are the same issues reoccurring despite previous fixes?

SLOW DEVELOPMENT AND DEPLOYMENT

‘ Do features take longer to develop due to complex code dependencies?

‘ Are build times excessively long, causing delays in deployment?

OUTDATED TECHNOLOGIES

‘ Does your project rely on outdated frameworks, libraries, or tools?

‘ Does upgrading dependencies feel risky due to potential breakages?

INCONSISTENT CODE QUALITY

‘ Are you working without established coding standards?

‘ Does your codebase consist of varying styles and conventions?

HIGH CODE COMPLEXITY

‘ Does your codebase have intertwined components that make it difficult to
understand or change?

‘ Does it lack of modularity, requiring extensive modification for minor changes?

POOR DOCUMENTATION

‘ ls your documentation is outdated, incomplete, or non-existent?

‘ Do you struggle to understand the code without consulting original developers?

DIFFICULTY ONBOARDING NEW DEVELOPERS

Does the codebase’s complexity/poor documentation hinder productivity
for new hires?

‘ Does onboarding require extensive knowledge transfer?

RECURRING TECHNICAL ISSUES

‘ Do the same technical issues reoccur, without a long-term solution?

‘ Do you frequently use workarounds instead of proper fixes?

HIGH MAINTENANCE COSTS

‘ Is a large portion of your budget allocated to maintaining the existing system?

‘ s the cost of adding features/making changes disproportionately high?

BUSINESS AND TECHNICAL MISALIGNMENT

‘ Are there conflicts between business goals and the system’s technical limitations?

Has your ability to meet market demands or implement new business
strategies slowed considerably?

LACK OF AUTOMATED TESTING

‘ Has a lack of automated testing practices led you to use manual, error-
prone testing processes?

‘ Do deployments often introduce new bugs?

LOW CODE REUSABILITY

‘ Haos a lack of reusable components/modules caused you to duplicate
code in multiple places?

‘ Do you often rewrite code rather than leverage existing functionality?

PERFORMANCE ISSUES

‘ Does Kour app experience frequent performance issues, such as slow load times
or high latency?

‘ Are performance problems often traced back to tech debt in the codebase?

USER COMPLAINTS AND POOR USER EXPERIENCE

‘ Do users frequently report bugs, crashes, or performance issues?

Has the user experience been negatively impacted by technical
limitations or unresolved issues?

NAVIGATING
TECHNICAL DEBT

S0

& GaD

7
=
7’
=
=
4
-
&
-
-
=
-
--
<
-

.-,
o .,
Dot >,

&)

0 s
0 Y
. .
- < ey
-]
.]
» 4 .
. S .
. .
3 X

.,

* o
.. .
.~ e

JRCTTEIN
V- .,

0)

& Y
y s
3 .
A .

l)
1]
.
. Vi .
) y
) S
s,
R o
. .
Temnast

INTRODUCTION

WHAT IS TECH DEBT?

THE IMPACTS OF TECH DEBT

TYPES OF TECH DEBT

MANAGEMENT STRATEGIES

BEST PRACTICES

Navigating
Technical
Debt

In the fast-paced
world of technology
and software, time is
of the essence.

We often see teams in a frenzied rush to launch
their products, operating under the belief that, in
order to be successful, their app needs to be the first to

seize current trends. But does being first always mean being best?

In reality, the quest to be "first" often conflicts with the essential need for
long-term success. Compromising best practices and taking shortcuts to
launch will inevitably result in technical debt - a serious threat to your
product’s ecosystem... and your success.

The following are just a few of the impacts that tech debt can have
on your project:

Reduced productivity

* Increased developer onboarding & ramp up time
% High risk of bugs

+ Increased developer turnover

+ Negative user feedback + reviews which hit the company’s bottom line

in this guide, we'll delve into technical debt, exploring its causes, far-
reaching consequences and, most importantly, effective strategies for
mitigating and handling it. Join us as we explore how seemingly minor
decisions made in the heat of project deadlines can, over time, evolve into
major challenges.

What is Technical Debt?

In the I0T software development process, technical debt is an
issue that emerges when developers opt for quick solutions or
take shortcuts to meet pressing business demands - typically at
the expense of optimal code quality or system design.

These shortcuts, akin to financial debt, accumulate interest over time,
gradually complicating the software landscape. With each workaround,
complexity mounts, resulting in a codebase that is increasingly difficult to
decipher, maintain and scale.

While these workarounds may provide a temporary reprieve in meeting
deadlines or delivering features promptly, its long-term repercussions
can be significant. Elevated costs, reduced productivity, heightened risk
of errors and user dissatisfaction all become potential pitfalls that can
threaten the longevity and competitiveness of software projects.

The following is a simple example illustrating how tech debt
can occur, and the challenges it can create:

A development team faces a tight client deadline for completing an app
project. Rather than request a deadline extension, the team works
towards completing the project as quickly as possible, which ultimately
requires them to take a few coding and testing shortcuts.

While these shortcuts enable the team meet their deadline, they also
lead to a convoluted codebase and several bugs that are quickly
discovered through an influx of negative user feedback. Unfortunately,
fixing these issues requires an additional developer to decipher and
repair the confusing codebase, ultimately delaying the release of an
iImportant new product feature.*

The Impact
of Tech Debt

While design and development
shortcuts might seem like a quick
fix for meeting tight deadlines, it’s
crucial to understand the negative
impact they can have on your
development journey- and your
end user’s experience.

In the previous example, coding shortcuts used to

meet a tight deadline resulted in bugs and a negative

user experience - but there are often more far reaching consequences.
A codebase laden with tech debt can make in nearly impossible to
implement new features without significant effort, in turn leaving the
development team with far less less capacity for exploring new ideas,
building new features and adapting to evolving market trends and
technological advancements. With endless bugs to fix, the
development cycle grows increasingly longer, and the time between
shipping new features does as well.

It’s important to understand that, as time progresses and the codebase
grows, technical debt tends to worsen and become more apparent.
Because tech debt accumulates interest over time, each new feature
added or modification made without addressing underlying issues
further compounds the debt - and the effort required to repay this debt
grows exponentially, often surpassing the initial time saved by taking
shortcuts.

Technical debt also tends to amplify existing challenges and
shortcomings in the software. Performance bottlenecks, reliability issues,
and usability challenges become more pronounced as the codebase
grows and accumulates debt, affecting the user experience and
hampering your product's competitiveness in the market.

For all of the reasons listed about, tech debt can have a devastating
impact on user experience. Apps laden with these issues often suffer
from performance issues, reliability concerns, and usability challenges,
leading to lower user satisfaction and reduced trust in your product. And,
In todays extremely competitive tech landscape, an inability to
consistently deliver new features can quickly lead users to other
products that meet the expectations.

Types of Tech Debt

Deliberate vs. Inadvertent Technical Debt:

Technical debt is often discussed in two distinct contexts: deliberate and
inadvertent. Deliberate technical debt involves a conscious choice by
developers or teams to prioritize immediate goals, such as meeting
deadlines or swiftly delivering features.

Inadvertent Technical Debt arises unintentionally, often as a result of
factors like limited experience, or an incomplete understanding of the
long-term implications of design and implementation choices.
Developers may inadvertently incur technical debt by overlooking best
practices, neglecting code quality, or failing to anticipate future
scalability or maintainability concerns.

Design Debt:

Design debt encompasses the compromises and shortcuts made during
the creation of a product's architecture and systems. As these systems
mature, they often become more difficult to extend, maintain, or scale,
displaying increased complexity and rigidity that hinder adaptability.

When scaling a product and introducing new features or
requirements, the inherent flaws in the system's design become
more evident, slowing development velocity and impeding the
team's ability to respond effectively to change. What initially may
have seemed like a cost-saving measure or a deadline-driven
shortcut can lead to higher operational costs, decreased reliability,
and a compromised user experience over time.

Code Debt:

Code debt represents the trade-offs made at the code level during
software development, often stemming from the temptation to opt
for quick fixes or shortcuts rather than implementing proper,
sustainable solutions.

These compromises can lead to the accumulation of technical deht
within the codebase, resulting in code that is challenging to
comprehend, modify, or debug. This complexity arises from
practices like copy-pasting code snippets, neglecting code
refactoring, or disregarding established coding standards. Eact
instance of code debt adds to the overall burden of maintaining the
software, as developers grapple with tangled, convoluted code
that becomes increasingly resistant to change over time.

Test Debt

Test debt emerges when software development teams overlook or delay
the implementation of proper testing practices throughout the
development lifecycle. The consequences of test debt ripple across the
software, manifesting as undetected bugs, diminished software quality,
and heightened regression issues.

Without robust testing in place, bugs and defects may slip through the
cracks, leading to user-facing issues and eroding trust in the software's
reliability. Moreover, the absence of thorough testing makes it
increasingly challenging to maintain and enhance the software over time.

As the codebase evolves and new features are introduced, the lack of
adequate testing exacerbates the risk of introducing regressions or
unintended side effects, further complicating maintenance efforts.

Documentation Debt:

Documentation debt arises when essential documentation, including
requirements, design specifications, or user manuals, is absent,
outdated, or incomplete. This can hinder comprehension of the system's
functionality, design rationale, or usage instructions, resulting in
confusion among developers, users, and other clients. Without clear
documentation, understanding how the system operates, it’s intended
behavior, and how different components interact becomes challenging,
leading to inefficiencies and potential errors.

Moreover, inadequate documentation poses obstacles during the
onboarding process for new team members, who may struggle to grasp
the system's architecture, business logic, or implementation details
without comprehensive documentation to guide them. This not only
prolongs the ramp-up time for new team members but also increases the
likelihood of errors and misunderstandings as they navigate the
codebase.

Strategies for Managing Tech Debt

For all the reasons listed above, managing technical debt is a critical aspect of
the software development process. At Yeti, we have a comprehensive
approach to managing technical debt, throughout the software development
lifecycle

Proactive Strategies

Agile Development Practices:

At Yeti, we employ Agile methodologies to oversee all our software projects.
The Agile process is an iterative development cycle, which means that we
operate within one to two-week sprint cycles, completing, testing, and
receiving feedback on each piece of work before proceeding to the next.
This structured approach inherently minimizes the accumulation of technical
debt, ensuring that our codebase remains clean, maintainable, and aligned
with project goals.

Continuous Integration and Deployment:

Continuous integration (Cl) and continuous deployment (CD) practices
automate the process of combining code changes and putting them into live
environments, allowing for quicker feedback loops and delivering smaller
changes that are easier to handle, Cl/CD pipelines help keep the code in good
shape and prevent debt from piling up.

Code Reviews

Code reviews involve team members examining each other's code before it's
integrated into the project. This process encourages sharing knowledge,
enhancing code quality, and spotting potential technical debt at an early
stage. By tapping into the collective expertise of the team, code reviews act
as a barrier against less-than-optimal coding practices and help maintain
clean, maintainable codebases that adhere to established coding standards (
you can take a look at our best practices repo for more information on code
reviews and pull requests)

https://github.com/yeti/best-practices/blob/main/docs/code-review-guide.md
https://github.com/yeti/best-practices/blob/main/docs/code-review-guide.md
https://www.yeti.co/blog/yetis-process-explained

This structured approach inherently
minimizes the accumulation of technical
debt, ensuring that our codebase remains
clean, maintainable, and aligned with
project goals.

Continuous Integration and
Deployment:

Continuous integration (Cl) and continuous
deployment (CD) practices automate the
process of combining code changes and
putting them into live environments, allowing
for quicker feedback loops and delivering
smaller changes that are easier to handle,
Cl/CD pipelines help keep the code in good
shape and prevent debt from piling up.

Code Reviews

Code reviews involve team members examining each other's code before it's
integrated into the project. This process encourages sharing knowledge,
enhancing code quality, and spotting potential technical debt at an early stage.
By tapping into the collective expertise of the team, code reviews act as a
barrier against less-than-optimal coding practices and help maintain clean,
maintainable codebases that adhere to established coding standards (you can
take a look at our best practices repo for more information on code reviews and
pull requests)

Automated Testing:

Automated testing involves having a program check your code to ensure it’s
working correctly before deployment. Unit tests, integration tests, and end-to-
end tests detect mistakes and ensure that any new changes won’t break
anything that was previously working. These tests give quick feedback on any
changes made to the code, confirm that the software behaves as expected, and
make sure it's reliable and stable. This helps prevent bugs that can cause
technical debt, saving time and effort in the long run. Take a look at our
automated testing_guide here.

https://github.com/yeti/best-practices/blob/main/docs/code-review-guide.md
https://github.com/yeti/best-practices/blob/main/docs/code-review-guide.md
https://www.notion.so/88daccc4680e4ef58c492cf52085d10f?pvs=21
https://www.notion.so/88daccc4680e4ef58c492cf52085d10f?pvs=21

Automated Testing:

Automated testing involves having a program check your code to ensure it’s
working correctly before deployment. Unit tests, integration tests, and end-to-end
tests detect mistakes and ensure that any new changes won’t break anything that
was previously working. These tests give quick feedback on any changes made to
the code, confirm that the software behaves as expected, and make sure it's
reliable and stable. This helps prevent bugs that can cause technical debt, saving
time and effort in the long run. Take a look at our automated testing_ guide here.

Reactive Strategies

Scheduled Refactoring

Scheduled refactoring sessions are regular opportunities for the development
team to tidy up their code and fix any issues that have built up over time. This
allows them to proactively address any accumulated technical debt by
systematically improving code, enhancing the systems design, and eliminating any
bugs.

Technical Debt Backlog

A technical debt backlog serves as a prioritized to-do list for developers, focusing
on cataloging and ranking debt-related issues. By transparently documenting and
prioritizing these issues, the development team can systematically integrate the
most critical ones into their regular task list, ensuring that technical debt receives
the necessary attention and resources for resolution.

Regular Assessments:

It is crucial for development teams to conduct regular tech debt assessments,
such as code quality analyses, architectural reviews, or performance audits. This
allows the team to identify and quantify existing debt within the codebase and
make informed decisions about prioritizing those fixes.

Communicaticn and Collaboration:

Effective communication and collaboration among team members and clients are
essential for managing tech debt successfully. At Yeti, we foster a culture of
transparency, openness, and shared responsibility that allows us to collectively
identify, prioritize, and address technical debt, and ensure that it remains a visible
and actionable aspect of our development process.

https://www.notion.so/88daccc4680e4ef58c492cf52085d10f?pvs=21

Tech Debt Best Practices

Navigating technical debt is an inevitable aspect of the IoT
software development journey, and adopting best
practices is a crucial for success. The following are a the
steps we’ve taken to foster a culture of responsibility,
continuous improvement, and success within our
development team.

Establish a Technical Debt Policy

We’ve instituted a clear technical debt policy that lays the
groundwork for managing debt effectively, and which outlines the
guidelines and procedures our team uses to identify, assess, and
address technical debt within projects. By establishing criteria for
categorizing debt, defining roles and responsibilities, and
implementing processes for debt management, we’re able to
proactively tackle debt-related challenges and minimize its impact
on project delivery.

not used; the default culture is [en-US1:
11876.54

[~ [om e s cwsseom | |

(L fefsfefefelsfalsfofele] wl

- [« b= b lie B TR TRR]ES B B I 10
c N

Encourage a Calture of Ownership

Cultivating a culture of ownership instills a sense of accountability
and responsibility among team members. By empowering
individuals to take ownership of the codebase, including its quality
and maintenance, we’ve fostered a collective commitment to
mitigating technical debt. We encourage open communication,
collaboration, and peer accountability to further reinforces this
culture, driving continuous improvement and ensuring that
technical debt is addressed proactively rather than being left to
accumulate.

Provide Training and Support

We’ve ensured that our team members have the necessary skills
and resources to identify and address technical debt by providing
regular training sessions, workshops, and access to relevant
resources that allows our developers to understand the
implications of technical debt.

Celebrate Successes

Recognizing and celebrating successes reinforces positive
behaviors and fosters a culture of continuous improvement.
Whether it's acknowledging successful debt reduction efforts or
highlighting team achievements in delivering high-quality software,
we believe that celebrating success helps motivates and inspire
our team to remain committed to building quality products.

At Yeti, we recognize the importance of managing technical
debt effectively, and we're committed to partnering with you
every step of the way. If you’re beginning your software or loT
software development journey, and would like to speak with an
experienced team, feel free to send us a message, we’d love
to chat!

https://www.yeti.co/iot-software-development
https://www.yeti.co/iot-software-development

